Measuring international uncertainty using global vector autoregressions with drifting parameters

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Michael Pfarrhofer

Ngôn ngữ: eng

Ký hiệu phân loại: 332.673 International investment

Thông tin xuất bản: 2019

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 163235

 Comment: JEL: C11, C55, E32, E66, G15
  Keywords: Bayesian state-space modeling, hierarchical priors, factor stochastic volatility, stochastic volatility in meanThis paper investigates the time-varying impacts of international macroeconomic uncertainty shocks. We use a global vector autoregressive specification with drifting coefficients and factor stochastic volatility in the errors to model six economies jointly. The measure of uncertainty is constructed endogenously by estimating a scalar driving the innovation variances of the latent factors, which is also included in the mean of the process. To achieve regularization, we use Bayesian techniques for estimation, and introduce a set of hierarchical global-local priors. The adopted priors center the model on a constant parameter specification with homoscedastic errors, but allow for time-variation if suggested by likelihood information. Moreover, we assume coefficients across economies to be similar, but provide sufficient flexibility via the hierarchical prior for country-specific idiosyncrasies. The results point towards pronounced real and financial effects of uncertainty shocks in all countries, with differences across economies and over time.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH