Nonparametric estimation of causal heterogeneity under high-dimensional confounding

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Michael Lechner, Michael Zimmert

Ngôn ngữ: eng

Ký hiệu phân loại: 003.75 Nonlinear systems

Thông tin xuất bản: 2019

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 163264

This paper considers the practically important case of nonparametrically estimating heterogeneous average treatment effects that vary with a limited number of discrete and continuous covariates in a selection-on-observables framework where the number of possible confounders is very large. We propose a two-step estimator for which the first step is estimated by machine learning. We show that this estimator has desirable statistical properties like consistency, asymptotic normality and rate double robustness. In particular, we derive the coupled convergence conditions between the nonparametric and the machine learning steps. We also show that estimating population average treatment effects by averaging the estimated heterogeneous effects is semi-parametrically efficient. The new estimator is an empirical example of the effects of mothers' smoking during pregnancy on the resulting birth weight.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH