Fixed-k Inference for Conditional Extremal Quantiles

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Yuya Sasaki, Yulong Wang

Ngôn ngữ: eng

Ký hiệu phân loại: 511.34 Model theory

Thông tin xuất bản: 2019

Mô tả vật lý:

Bộ sưu tập: Báo, Tạp chí

ID: 163296

We develop a new extreme value theory for repeated cross-sectional and panel data to construct asymptotically valid confidence intervals (CIs) for conditional extremal quantiles from a fixed number $k$ of nearest-neighbor tail observations. As a by-product, we also construct CIs for extremal quantiles of coefficients in linear random coefficient models. For any fixed $k$, the CIs are uniformly valid without parametric assumptions over a set of nonparametric data generating processes associated with various tail indices. Simulation studies show that our CIs exhibit superior small-sample coverage and length properties than alternative nonparametric methods based on asymptotic normality. Applying the proposed method to Natality Vital Statistics, we study factors of extremely low birth weights. We find that signs of major effects are the same as those found in preceding studies based on parametric models, but with different magnitudes.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH