Systemic Risk Clustering of China Internet Financial Based on t-SNE Machine Learning Algorithm

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Mi Chuanmin, Lin Qingtong, Xu Runjie

Ngôn ngữ: eng

Ký hiệu phân loại: 915.138 Geography of and travel in Asia

Thông tin xuất bản: 2019

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 163329

With the rapid development of Internet finance, a large number of studies have shown that Internet financial platforms have different financial systemic risk characteristics when they are subject to macroeconomic shocks or fragile internal crisis. From the perspective of regional development of Internet finance, this paper uses t-SNE machine learning algorithm to obtain data mining of China's Internet finance development index involving 31 provinces and 335 cities and regions. The conclusion of the peak and thick tail characteristics, then proposed three classification risks of Internet financial systemic risk, providing more regionally targeted recommendations for the systematic risk of Internet finance.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH