Distributional conformal prediction

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Victor Chernozhukov, Kaspar Wüthrich, Yinchu Zhu

Ngôn ngữ: eng

Ký hiệu phân loại: 511.4 Approximations formerly also 513.24 and expansions

Thông tin xuất bản: 2019

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 163370

We propose a robust method for constructing conditionally valid prediction intervals based on models for conditional distributions such as quantile and distribution regression. Our approach can be applied to important prediction problems including cross-sectional prediction, k-step-ahead forecasts, synthetic controls and counterfactual prediction, and individual treatment effects prediction. Our method exploits the probability integral transform and relies on permuting estimated ranks. Unlike regression residuals, ranks are independent of the predictors, allowing us to construct conditionally valid prediction intervals under heteroskedasticity. We establish approximate conditional validity under consistent estimation and provide approximate unconditional validity under model misspecification, overfitting, and with time series data. We also propose a simple "shape" adjustment of our baseline method that yields optimal prediction intervals.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH