Doubly Robust Identification for Causal Panel Data Models

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Dmitry Arkhangelsky, Guido W Imbens

Ngôn ngữ: eng

Ký hiệu phân loại: 003.1 System identification

Thông tin xuất bản: 2019

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 163390

We study identification and estimation of causal effects in settings with panel data. Traditionally researchers follow model-based identification strategies relying on assumptions governing the relation between the potential outcomes and the observed and unobserved confounders. We focus on a different, complementary approach to identification where assumptions are made about the connection between the treatment assignment and the unobserved confounders. Such strategies are common in cross-section settings but rarely used with panel data. We introduce different sets of assumptions that follow the two paths to identification and develop a doubly robust approach. We propose estimation methods that build on these identification strategies.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH