Inference for Linear Conditional Moment Inequalities

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Isaiah Andrews, Ariel Pakes, Jonathan Roth

Ngôn ngữ: eng

Ký hiệu phân loại: 512.88 Algebra

Thông tin xuất bản: 2019

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 163398

We show that moment inequalities in a wide variety of economic applications have a particular linear conditional structure. We use this structure to construct uniformly valid confidence sets that remain computationally tractable even in settings with nuisance parameters. We first introduce least favorable critical values which deliver non-conservative tests if all moments are binding. Next, we introduce a novel conditional inference approach which ensures a strong form of insensitivity to slack moments. Our recommended approach is a hybrid technique which combines desirable aspects of the least favorable and conditional methods. The hybrid approach performs well in simulations calibrated to Wollmann (2018), with favorable power and computational time comparisons relative to existing alternatives.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH