Parallel Algorithm for Approximating Nash Equilibrium in Multiplayer Stochastic Games with Application to Naval Strategic Planning

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Sam Ganzfried, Conner Laughlin, Charles Morefield

Ngôn ngữ: eng

Ký hiệu phân loại: 519.3 Game theory

Thông tin xuất bản: 2019

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 163430

Many real-world domains contain multiple agents behaving strategically with probabilistic transitions and uncertain (potentially infinite) duration. Such settings can be modeled as stochastic games. While algorithms have been developed for solving (i.e., computing a game-theoretic solution concept such as Nash equilibrium) two-player zero-sum stochastic games, research on algorithms for non-zero-sum and multiplayer stochastic games is limited. We present a new algorithm for these settings, which constitutes the first parallel algorithm for multiplayer stochastic games. We present experimental results on a 4-player stochastic game motivated by a naval strategic planning scenario, showing that our algorithm is able to quickly compute strategies constituting Nash equilibrium up to a very small degree of approximation error.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH