Quasi Maximum Likelihood Estimation and Inference of Large Approximate Dynamic Factor Models via the EM algorithm

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Matteo Barigozzi, Matteo Luciani

Ngôn ngữ: eng

Ký hiệu phân loại: 511.4 Approximations formerly also 513.24 and expansions

Thông tin xuất bản: 2019

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 163452

 We study estimation of large Dynamic Factor models implemented through the Expectation Maximization (EM) algorithm, jointly with the Kalman smoother. We prove that as both the cross-sectional dimension, $n$, and the sample size, $T$, diverge to infinity: (i) the estimated loadings are $\sqrt T$-consistent, asymptotically normal and equivalent to their Quasi Maximum Likelihood estimates
  (ii) the estimated factors are $\sqrt n$-consistent, asymptotically normal and equivalent to their Weighted Least Squares estimates. Moreover, the estimated loadings are asymptotically as efficient as those obtained by Principal Components analysis, while the estimated factors are more efficient if the idiosyncratic covariance is sparse enough.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH