Identification and Estimation of SVARMA models with Independent and Non-Gaussian Inputs

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Bernd Funovits

Ngôn ngữ: eng

Ký hiệu phân loại: 003.1 System identification

Thông tin xuất bản: 2019

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 163454

Comment: 20 pages, 4 figures, 40 pages appendixThis paper analyzes identifiability properties of structural vector autoregressive moving average (SVARMA) models driven by independent and non-Gaussian shocks. It is well known, that SVARMA models driven by Gaussian errors are not identified without imposing further identifying restrictions on the parameters. Even in reduced form and assuming stability and invertibility, vector autoregressive moving average models are in general not identified without requiring certain parameter matrices to be non-singular. Independence and non-Gaussianity of the shocks is used to show that they are identified up to permutations and scalings. In this way, typically imposed identifying restrictions are made testable. Furthermore, we introduce a maximum-likelihood estimator of the non-Gaussian SVARMA model which is consistent and asymptotically normally distributed.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH