Matrix Completion, Counterfactuals, and Factor Analysis of Missing Data

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Jushan Bai, Serena Ng

Ngôn ngữ: eng

Ký hiệu phân loại: 512.5 Linear algebra

Thông tin xuất bản: 2019

Mô tả vật lý:

Bộ sưu tập: Báo, Tạp chí

ID: 163483

This paper proposes an imputation procedure that uses the factors estimated from a tall block along with the re-rotated loadings estimated from a wide block to impute missing values in a panel of data. Assuming that a strong factor structure holds for the full panel of data and its sub-blocks, it is shown that the common component can be consistently estimated at four different rates of convergence without requiring regularization or iteration. An asymptotic analysis of the estimation error is obtained. An application of our analysis is estimation of counterfactuals when potential outcomes have a factor structure. We study the estimation of average and individual treatment effects on the treated and establish a normal distribution theory that can be useful for hypothesis testing.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH