Feasible Generalized Least Squares for Panel Data with Cross-sectional and Serial Correlations

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Jushan Bai, Sung Hoon Choi, Yuan Liao

Ngôn ngữ: eng

Ký hiệu phân loại: 521.36 Celestial mechanics

Thông tin xuất bản: 2019

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 163504

This paper considers generalized least squares (GLS) estimation for linear panel data models. By estimating the large error covariance matrix consistently, the proposed feasible GLS (FGLS) estimator is more efficient than the ordinary least squares (OLS) in the presence of heteroskedasticity, serial, and cross-sectional correlations. To take into account the serial correlations, we employ the banding method. To take into account the cross-sectional correlations, we suggest to use the thresholding method. We establish the limiting distribution of the proposed estimator. A Monte Carlo study is considered. The proposed method is applied to an empirical application.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH