Long non-coding RNAs (lncRNAs) play diverse biological roles within cells. Despite not encoding proteins, they are crucial in regulating gene expression, chromatin structure and function, cell differentiation and development, and the occurrence of diseases. Vibrio alginolyticus (V. alginolyticus) is a common bacterium found in marine environments that poses a threat to shellfish by infecting them through filtration feeding. Research has demonstrated the substantial involvement of lncRNAs in the immune response of shellfish. However, the specific mechanism by which lncRNAs participate in the immune regulatory process following infection of Mytilus coruscus (M. coruscus) with V. alginolyticus has not been investigated. Therefore, the transcription profiles of lncRNAs in M. coruscus hemocytes were investigated. A grand total of 48,246 lncRNAs were detected, with 2421 genes that exhibited and 717 lncRNAs that had differential expression. To gain a better understanding of the potential roles of the differentially expressed lncRNAs (DE-lncRNAs), GO and KEGG pathway analyses were performed on their target mRNAs, suggesting that lncRNAs have the ability to control gene expression levels and consequently influence immune-related pathways, hence regulating the immune response in M. coruscus. Additionally, a total of 138 lncRNA-mRNA pairs were identified through the calculation of co-expression relationships between DE-lncRNAs and immune-related DE-mRNAs. These findings provide new insights into the role of lncRNAs in the immune response of M. coruscus and offer important resources for further investigation into the role of lncRNAs in M. coruscus pathogen infection.