Aggregation for potentially infinite populations without continuity or completeness

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: David McCarthy, Kalle Mikkola, Teruji Thomas

Ngôn ngữ: eng

Ký hiệu phân loại: 363.91 Population quantity

Thông tin xuất bản: 2019

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 163562

Comment: 27 pagesWe present an abstract social aggregation theorem. Society, and each individual, has a preorder that may be interpreted as expressing values or beliefs. The preorders are allowed to violate both completeness and continuity, and the population is allowed to be infinite. The preorders are only assumed to be represented by functions with values in partially ordered vector spaces, and whose product has convex range. This includes all preorders that satisfy strong independence. Any Pareto indifferent social preorder is then shown to be represented by a linear transformation of the representations of the individual preorders. Further Pareto conditions on the social preorder correspond to positivity conditions on the transformation. When all the Pareto conditions hold and the population is finite, the social preorder is represented by a sum of individual preorder representations. We provide two applications. The first yields an extremely general version of Harsanyi's social aggregation theorem. The second generalizes a classic result about linear opinion pooling.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH