Relative Maximum Likelihood Updating of Ambiguous Beliefs

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Xiaoyu Cheng

Ngôn ngữ: eng

Ký hiệu phân loại: 511.4 Approximations formerly also 513.24 and expansions

Thông tin xuất bản: 2019

Mô tả vật lý:

Bộ sưu tập: Báo, Tạp chí

ID: 163576

Comment: Accepted version at Journal of Mathematical EconomicsThis paper proposes and axiomatizes a new updating rule: Relative Maximum Likelihood (RML) for ambiguous beliefs represented by a set of priors (C). This rule takes the form of applying Bayes' rule to a subset of C. This subset is a linear contraction of C towards its subset ascribing a maximal probability to the observed event. The degree of contraction captures the extent of willingness to discard priors based on likelihood when updating. Two well-known updating rules of multiple priors, Full Bayesian (FB) and Maximum Likelihood (ML), are included as special cases of RML. An axiomatic characterization of conditional preferences generated by RML updating is provided when the preferences admit Maxmin Expected Utility representations. The axiomatization relies on weakening the axioms characterizing FB and ML. The axiom characterizing ML is identified for the first time in this paper, addressing a long-standing open question in the literature.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH