Robust Inference on Infinite and Growing Dimensional Time Series Regression

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Abhimanyu Gupta, Myung Hwan Seo

Ngôn ngữ: eng

Ký hiệu phân loại: 512.5 Linear algebra

Thông tin xuất bản: 2019

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 163620

Comment: 58 pages, 7 figuresWe develop a class of tests for time series models such as multiple regression with growing dimension, infinite-order autoregression and nonparametric sieve regression. Examples include the Chow test and general linear restriction tests of growing rank $p$. Employing such increasing $p$ asymptotics, we introduce a new scale correction to conventional test statistics which accounts for a high-order long-run variance (HLV) that emerges as $ p $ grows with sample size. We also propose a bias correction via a null-imposed bootstrap to alleviate finite sample bias without sacrificing power unduly. A simulation study shows the importance of robustifying testing procedures against the HLV even when $ p $ is moderate. The tests are illustrated with an application to the oil regressions in Hamilton (2003).
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH