Hybrid quantile estimation for asymmetric power GARCH models

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Guodong Li, Wai Keung Li, Guochang Wang, Ke Zhu

Ngôn ngữ: eng

Ký hiệu phân loại: 001.43 Historical, descriptive, experimental methods

Thông tin xuất bản: 2019

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 163633

Asymmetric power GARCH models have been widely used to study the higher order moments of financial returns, while their quantile estimation has been rarely investigated. This paper introduces a simple monotonic transformation on its conditional quantile function to make the quantile regression tractable. The asymptotic normality of the resulting quantile estimators is established under either stationarity or non-stationarity. Moreover, based on the estimation procedure, new tests for strict stationarity and asymmetry are also constructed. This is the first try of the quantile estimation for non-stationary ARCH-type models in the literature. The usefulness of the proposed methodology is illustrated by simulation results and real data analysis.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH