An Integrated Early Warning System for Stock Market Turbulence

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Ye Ma, Peiwan Wang, Lu Zong

Ngôn ngữ: eng

Ký hiệu phân loại: 200.11 Systems

Thông tin xuất bản: 2019

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 163657

This study constructs an integrated early warning system (EWS) that identifies and predicts stock market turbulence. Based on switching ARCH (SWARCH) filtering probabilities of the high volatility regime, the proposed EWS first classifies stock market crises according to an indicator function with thresholds dynamically selected by the two-peak method. A hybrid algorithm is then developed in the framework of a long short-term memory (LSTM) network to make daily predictions that alert turmoils. In the empirical evaluation based on ten-year Chinese stock data, the proposed EWS yields satisfying results with the test-set accuracy of $96.6\%$ and on average $2.4$ days of the forewarned period. The model's stability and practical value in real-time decision-making are also proven by the cross-validation and back-testing.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH