Estimating Large Mixed-Frequency Bayesian VAR Models

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Sebastian Ankargren, Paulina Jonéus

Ngôn ngữ: eng

Ký hiệu phân loại: 001.434 Experimental method

Thông tin xuất bản: 2019

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 163684

We discuss the issue of estimating large-scale vector autoregressive (VAR) models with stochastic volatility in real-time situations where data are sampled at different frequencies. In the case of a large VAR with stochastic volatility, the mixed-frequency data warrant an additional step in the already computationally challenging Markov Chain Monte Carlo algorithm used to sample from the posterior distribution of the parameters. We suggest the use of a factor stochastic volatility model to capture a time-varying error covariance structure. Because the factor stochastic volatility model renders the equations of the VAR conditionally independent, settling for this particular stochastic volatility model comes with major computational benefits. First, we are able to improve upon the mixed-frequency simulation smoothing step by leveraging a univariate and adaptive filtering algorithm. Second, the regression parameters can be sampled equation-by-equation in parallel. These computational features of the model alleviate the computational burden and make it possible to move the mixed-frequency VAR to the high-dimensional regime. We illustrate the model by an application to US data using our mixed-frequency VAR with 20, 34 and 119 variables.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH