Minimax Semiparametric Learning With Approximate Sparsity

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Jelena Bradic, Victor Chernozhukov, Whitney K Newey, Yinchu Zhu

Ngôn ngữ: eng

Ký hiệu phân loại: 511.4 Approximations formerly also 513.24 and expansions

Thông tin xuất bản: 2019

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 163764

This paper is about the feasibility and means of root-n consistently estimating linear, mean-square continuous functionals of a high dimensional, approximately sparse regression. Such objects include a wide variety of interesting parameters such as regression coefficients, average derivatives, and the average treatment effect. We give lower bounds on the convergence rate of estimators of a regression slope and an average derivative and find that these bounds are substantially larger than in a low dimensional, semiparametric setting. We also give debiased machine learners that are root-n consistent under either a minimal approximate sparsity condition or rate double robustness. These estimators improve on existing estimators in being root-n consistent under more general conditions that previously known.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH