Bayesian estimation of large dimensional time varying VARs using copulas

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Marwan Izzeldin, Lorenzo Trapani, Mike Tsionas

Ngôn ngữ: eng

Ký hiệu phân loại: 529.76 Chronology

Thông tin xuất bản: 2019

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 163766

This paper provides a simple, yet reliable, alternative to the (Bayesian) estimation of large multivariate VARs with time variation in the conditional mean equations and/or in the covariance structure. With our new methodology, the original multivariate, n dimensional model is treated as a set of n univariate estimation problems, and cross-dependence is handled through the use of a copula. Thus, only univariate distribution functions are needed when estimating the individual equations, which are often available in closed form, and easy to handle with MCMC (or other techniques). Estimation is carried out in parallel for the individual equations. Thereafter, the individual posteriors are combined with the copula, so obtaining a joint posterior which can be easily resampled. We illustrate our approach by applying it to a large time-varying parameter VAR with 25 macroeconomic variables.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH