A Higher-Order Correct Fast Moving-Average Bootstrap for Dependent Data

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Davide La Vecchia, Alban Moor, Olivier Scaillet

Ngôn ngữ: eng

Ký hiệu phân loại: 003.76 Stochastic systems

Thông tin xuất bản: 2020

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 163839

We develop and implement a novel fast bootstrap for dependent data. Our scheme is based on the i.i.d. resampling of the smoothed moment indicators. We characterize the class of parametric and semi-parametric estimation problems for which the method is valid. We show the asymptotic refinements of the proposed procedure, proving that it is higher-order correct under mild assumptions on the time series, the estimating functions, and the smoothing kernel. We illustrate the applicability and the advantages of our procedure for Generalized Empirical Likelihood estimation. As a by-product, our fast bootstrap provides higher-order correct asymptotic confidence distributions. Monte Carlo simulations on an autoregressive conditional duration model provide numerical evidence that the novel bootstrap yields higher-order accurate confidence intervals. A real-data application on dynamics of trading volume of stocks illustrates the advantage of our method over the routinely-applied first-order asymptotic theory, when the underlying distribution of the test statistic is skewed or fat-tailed.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH