Recovering Network Structure from Aggregated Relational Data using Penalized Regression

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Hossein Alidaee, Eric Auerbach, Michael P Leung

Ngôn ngữ: eng

Ký hiệu phân loại: 005.756 Relational databases

Thông tin xuất bản: 2020

Mô tả vật lý:

Bộ sưu tập: Báo, Tạp chí

ID: 163844

Social network data can be expensive to collect. Breza et al. (2017) propose aggregated relational data (ARD) as a low-cost substitute that can be used to recover the structure of a latent social network when it is generated by a specific parametric random effects model. Our main observation is that many economic network formation models produce networks that are effectively low-rank. As a consequence, network recovery from ARD is generally possible without parametric assumptions using a nuclear-norm penalized regression. We demonstrate how to implement this method and provide finite-sample bounds on the mean squared error of the resulting estimator for the distribution of network links. Computation takes seconds for samples with hundreds of observations. Easy-to-use code in R and Python can be found at https://github.com/mpleung/ARD.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH