Oracle Efficient Estimation of Structural Breaks in Cointegrating Regressions

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Karsten Schweikert

Ngôn ngữ: eng

Ký hiệu phân loại: 330.18 Economics

Thông tin xuất bản: 2020

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 163857

In this paper, we propose an adaptive group lasso procedure to efficiently estimate structural breaks in cointegrating regressions. It is well-known that the group lasso estimator is not simultaneously estimation consistent and model selection consistent in structural break settings. Hence, we use a first step group lasso estimation of a diverging number of breakpoint candidates to produce weights for a second adaptive group lasso estimation. We prove that parameter changes are estimated consistently by group lasso and show that the number of estimated breaks is greater than the true number but still sufficiently close to it. Then, we use these results and prove that the adaptive group lasso has oracle properties if weights are obtained from our first step estimation. Simulation results show that the proposed estimator delivers the expected results. An economic application to the long-run US money demand function demonstrates the practical importance of this methodology.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH