Sharpe Ratio Analysis in High Dimensions: Residual-Based Nodewise Regression in Factor Models

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Mehmet Caner, Marcelo Medeiros, Gabriel Vasconcelos

Ngôn ngữ: eng

Ký hiệu phân loại: 512.5 Linear algebra

Thông tin xuất bản: 2020

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 163907

 We provide a new theory for nodewise regression when the residuals from a fitted factor model are used. We apply our results to the analysis of the consistency of Sharpe ratio estimators when there are many assets in a portfolio. We allow for an increasing number of assets as well as time observations of the portfolio. Since the nodewise regression is not feasible due to the unknown nature of idiosyncratic errors, we provide a feasible-residual-based nodewise regression to estimate the precision matrix of errors which is consistent even when number of assets, p, exceeds the time span of the portfolio, n. In another new development, we also show that the precision matrix of returns can be estimated consistently, even with an increasing number of factors and p>
 n. We show that: (1) with p>
 n, the Sharpe ratio estimators are consistent in global minimum-variance and mean-variance portfolios
  and (2) with p>
 n, the maximum Sharpe ratio estimator is consistent when the portfolio weights sum to one
  and (3) with p<
 <
 n, the maximum-out-of-sample Sharpe ratio estimator is consistent.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH