Dependence-Robust Inference Using Resampled Statistics

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Michael P Leung

Ngôn ngữ: eng

Ký hiệu phân loại: 001.422 Statistical methods

Thông tin xuất bản: 2020

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 163908

We develop inference procedures robust to general forms of weak dependence. The procedures utilize test statistics constructed by resampling in a manner that does not depend on the unknown correlation structure of the data. We prove that the statistics are asymptotically normal under the weak requirement that the target parameter can be consistently estimated at the parametric rate. This holds for regular estimators under many well-known forms of weak dependence and justifies the claim of dependence-robustness. We consider applications to settings with unknown or complicated forms of dependence, with various forms of network dependence as leading examples. We develop tests for both moment equalities and inequalities.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH