Fair Prediction with Endogenous Behavior

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Christopher Jung, Sampath Kannan, Changhwa Lee, Mallesh M Pai, Aaron Roth, Rakesh Vohra

Ngôn ngữ: eng

Ký hiệu phân loại: 599.88515 Primates

Thông tin xuất bản: 2020

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 163960

 There is increasing regulatory interest in whether machine learning algorithms deployed in consequential domains (e.g. in criminal justice) treat different demographic groups "fairly." However, there are several proposed notions of fairness, typically mutually incompatible. Using criminal justice as an example, we study a model in which society chooses an incarceration rule. Agents of different demographic groups differ in their outside options (e.g. opportunity for legal employment) and decide whether to commit crimes. We show that equalizing type I and type II errors across groups is consistent with the goal of minimizing the overall crime rate
  other popular notions of fairness are not.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH