Cournot-Nash equilibrium and optimal transport in a dynamic setting

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Beatrice Acciaio, Julio Backhoff-Veraguas, Junchao Jia

Ngôn ngữ: eng

Ký hiệu phân loại: 339.23 Input-output analysis (Interindustry analysis)

Thông tin xuất bản: 2020

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 163982

Comment: Literature review expanded, typos corrected, Remark 3.8 addedWe consider a large population dynamic game in discrete time. The peculiarity of the game is that players are characterized by time-evolving types, and so reasonably their actions should not anticipate the future values of their types. When interactions between players are of mean-field kind, we relate Nash equilibria for such games to an asymptotic notion of dynamic Cournot-Nash equilibria. Inspired by the works of Blanchet and Carlier for the static situation, we interpret dynamic Cournot-Nash equilibria in the light of causal optimal transport theory. Further specializing to games of potential type, we establish existence, uniqueness and characterization of equilibria. Moreover we develop, for the first time, a numerical scheme for causal optimal transport, which is then leveraged in order to compute dynamic Cournot-Nash equilibria. This is illustrated in a detailed case study of a congestion game.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH