Technological interdependencies predict innovation dynamics

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: J. Doyne Farmer, François Lafond, Anton Pichler

Ngôn ngữ: eng

Ký hiệu phân loại: 609.17 Historical, geographic, persons treatment

Thông tin xuất bản: 2020

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 164030

Comment: 10 pages, 4 figuresWe propose a simple model where the innovation rate of a technological domain depends on the innovation rate of the technological domains it relies on. Using data on US patents from 1836 to 2017, we make out-of-sample predictions and find that the predictability of innovation rates can be boosted substantially when network effects are taken into account. In the case where a technology$'$s neighborhood future innovation rates are known, the average predictability gain is 28$\%$ compared to simpler time series model which do not incorporate network effects. Even when nothing is known about the future, we find positive average predictability gains of 20$\%$. The results have important policy implications, suggesting that the effective support of a given technology must take into account the technological ecosystem surrounding the targeted technology.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH