Escaping Cannibalization? Correlation-Robust Pricing for a Unit-Demand Buyer

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Moshe Babaioff, Michal Feldman, Yannai A Gonczarowski, Brendan Lucier, Inbal Talgam-Cohen

Ngôn ngữ: eng

Ký hiệu phân loại: 900.72 History, geography, and auxiliary disciplines

Thông tin xuất bản: 2020

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 164081

 We consider a robust version of the revenue maximization problem, where a single seller wishes to sell $n$ items to a single unit-demand buyer. In this robust version, the seller knows the buyer's marginal value distribution for each item separately, but not the joint distribution, and prices the items to maximize revenue in the worst case over all compatible correlation structures. We devise a computationally efficient (polynomial in the support size of the marginals) algorithm that computes the worst-case joint distribution for any choice of item prices. And yet, in sharp contrast to the additive buyer case (Carroll, 2017), we show that it is NP-hard to approximate the optimal choice of prices to within any factor better than $n^{1/2-\epsilon}$. For the special case of marginal distributions that satisfy the monotone hazard rate property, we show how to guarantee a constant fraction of the optimal worst-case revenue using item pricing
  this pricing equates revenue across all possible correlations and can be computed efficiently.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH