Estimation and Uniform Inference in Sparse High-Dimensional Additive Models

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Philipp Bach, Sven Klaassen, Jannis Kueck, Martin Spindler

Ngôn ngữ: eng

Ký hiệu phân loại: 511.4 Approximations formerly also 513.24 and expansions

Thông tin xuất bản: 2020

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 164172

We develop a novel method to construct uniformly valid confidence bands for a nonparametric component $f_1$ in the sparse additive model $Y=f_1(X_1)+\ldots + f_p(X_p) + \varepsilon$ in a high-dimensional setting. Our method integrates sieve estimation into a high-dimensional Z-estimation framework, facilitating the construction of uniformly valid confidence bands for the target component $f_1$. To form these confidence bands, we employ a multiplier bootstrap procedure. Additionally, we provide rates for the uniform lasso estimation in high dimensions, which may be of independent interest. Through simulation studies, we demonstrate that our proposed method delivers reliable results in terms of estimation and coverage, even in small samples.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH