Kernel Estimation of Spot Volatility with Microstructure Noise Using Pre-Averaging

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: José E Figueroa-López, Bei Wu

Ngôn ngữ: eng

Ký hiệu phân loại: 003.76 Stochastic systems

Thông tin xuất bản: 2020

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 164176

Comment: 53 pagesWe first revisit the problem of estimating the spot volatility of an It\^o semimartingale using a kernel estimator. We prove a Central Limit Theorem with optimal convergence rate for a general two-sided kernel. Next, we introduce a new pre-averaging/kernel estimator for spot volatility to handle the microstructure noise of ultra high-frequency observations. We prove a Central Limit Theorem for the estimation error with an optimal rate and study the optimal selection of the bandwidth and kernel functions. We show that the pre-averaging/kernel estimator's asymptotic variance is minimal for exponential kernels, hence, justifying the need of working with kernels of unbounded support as proposed in this work. We also develop a feasible implementation of the proposed estimators with optimal bandwidth. Monte Carlo experiments confirm the superior performance of the devised method.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH