Double Debiased Machine Learning Nonparametric Inference with Continuous Treatments

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Kyle Colangelo, Ying-Ying Lee

Ngôn ngữ: eng

Ký hiệu phân loại: 006.31 Machine learning

Thông tin xuất bản: 2020

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 164188

We propose a doubly robust inference method for causal effects of continuous treatment variables, under unconfoundedness and with nonparametric or high-dimensional nuisance functions. Our double debiased machine learning (DML) estimators for the average dose-response function (or the average structural function) and the partial effects are asymptotically normal with non-parametric convergence rates. The first-step estimators for the nuisance conditional expectation function and the conditional density can be nonparametric or ML methods. Utilizing a kernel-based doubly robust moment function and cross-fitting, we give high-level conditions under which the nuisance function estimators do not affect the first-order large sample distribution of the DML estimators. We provide sufficient low-level conditions for kernel, series, and deep neural networks. We justify the use of kernel to localize the continuous treatment at a given value by the Gateaux derivative. We implement various ML methods in Monte Carlo simulations and an empirical application on a job training program evaluation
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH