Wild Bootstrap Inference for Penalized Quantile Regression for Longitudinal Data

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Carlos Lamarche, Thomas Parker

Ngôn ngữ: eng

Ký hiệu phân loại: 003.75 Nonlinear systems

Thông tin xuất bản: 2020

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 164208

Comment: 52 pages, 12 page appendix, 3 figures, 6 tablesThe existing theory of penalized quantile regression for longitudinal data has focused primarily on point estimation. In this work, we investigate statistical inference. We propose a wild residual bootstrap procedure and show that it is asymptotically valid for approximating the distribution of the penalized estimator. The model puts no restrictions on individual effects, and the estimator achieves consistency by letting the shrinkage decay in importance asymptotically. The new method is easy to implement and simulation studies show that it has accurate small sample behavior in comparison with existing procedures. Finally, we illustrate the new approach using U.S. Census data to estimate a model that includes more than eighty thousand parameters.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH