Correlates of the country differences in the infection and mortality rates during the first wave of the COVID-19 pandemic: Evidence from Bayesian model averaging

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Petar Jolakoski, Ljupco Kocarev, Viktor Stojkoski, Dragan Tevdovski, Zoran Utkovski

Ngôn ngữ: eng

Ký hiệu phân loại: 362.1962414 Physical illness

Thông tin xuất bản: 2020

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 164228

In the initial wave of the COVID-19 pandemic we observed great discrepancies in both infection and mortality rates between countries. Besides the biological and epidemiological factors, a multitude of social and economic criteria also influence the extent to which these discrepancies appear. Consequently, there is an active debate regarding the critical socio-economic and health factors that correlate with the infection and mortality rates outcome of the pandemic. Here, we leverage Bayesian model averaging techniques and country level data to investigate the potential of 28 variables, describing a diverse set of health and socio-economic characteristics, in being correlates of the final number of infections and deaths during the first wave of the coronavirus pandemic. We show that only few variables are able to robustly correlate with these outcomes. To understand the relationship between the potential correlates in explaining the infection and death rates, we create a Jointness Space. Using this space, we conclude that the extent to which each variable is able to provide a credible explanation for the COVID-19 infections/mortality outcome varies between countries because of their heterogeneous features.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH