Short-Term Covid-19 Forecast for Latecomers

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Marcelo Medeiros, Alexandre Street, Davi Valladão, Gabriel Vasconcelos, Eduardo Zilberman

Ngôn ngữ: eng

Ký hiệu phân loại: 362.1962414 Physical illness

Thông tin xuất bản: 2020

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 164229

The number of Covid-19 cases is increasing dramatically worldwide. Therefore, the availability of reliable forecasts for the number of cases in the coming days is of fundamental importance. We propose a simple statistical method for short-term real-time forecasting of the number of Covid-19 cases and fatalities in countries that are latecomers -- i.e., countries where cases of the disease started to appear some time after others. In particular, we propose a penalized (LASSO) regression with an error correction mechanism to construct a model of a latecomer in terms of the other countries that were at a similar stage of the pandemic some days before. By tracking the number of cases and deaths in those countries, we forecast through an adaptive rolling-window scheme the number of cases and deaths in the latecomer. We apply this methodology to Brazil, and show that (so far) it has been performing very well. These forecasts aim to foster a better short-run management of the health system capacity.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH