Noise-Induced Randomization in Regression Discontinuity Designs

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Dean Eckles, Nikolaos Ignatiadis, Stefan Wager, Han Wu

Ngôn ngữ: eng

Ký hiệu phân loại: 620.2 Sound and related vibrations

Thông tin xuất bản: 2020

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 164261

Comment: BiometrikaRegression discontinuity designs assess causal effects in settings where treatment is determined by whether an observed running variable crosses a pre-specified threshold. Here we propose a new approach to identification, estimation, and inference in regression discontinuity designs that uses knowledge about exogenous noise (e.g., measurement error) in the running variable. In our strategy, we weight treated and control units to balance a latent variable of which the running variable is a noisy measure. Our approach is driven by effective randomization provided by the noise in the running variable, and complements standard formal analyses that appeal to continuity arguments while ignoring the stochastic nature of the assignment mechanism.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH