Revealing Cluster Structures Based on Mixed Sampling Frequencies

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Hie Joo Ahn, Yun Liu, Yeonwoo Rho

Ngôn ngữ: eng

Ký hiệu phân loại: 523.85 Clusters

Thông tin xuất bản: 2020

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 164268

This paper proposes a new linearized mixed data sampling (MIDAS) model and develops a framework to infer clusters in a panel regression with mixed frequency data. The linearized MIDAS estimation method is more flexible and substantially simpler to implement than competing approaches. We show that the proposed clustering algorithm successfully recovers true membership in the cross-section, both in theory and in simulations, without requiring prior knowledge of the number of clusters. This methodology is applied to a mixed-frequency Okun's law model for state-level data in the U.S. and uncovers four meaningful clusters based on the dynamic features of state-level labor markets.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH