Heterogeneous boundary synchronization of time-delayed competitive neural networks with adaptive learning parameter in the space-time discretized frames.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Shaobin Rao, Tianwei Zhang, Jianwen Zhou

Ngôn ngữ: eng

Ký hiệu phân loại: 306.7663 Sexual relations

Thông tin xuất bản: United States : Neural networks : the official journal of the International Neural Network Society , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 164272

This article presents the master-slave time-delayed competitive neural networks in space-time discretized frames(STD-CNNs) with the heterogeneous structure, induced by the design of an adaptive learning parameter in the slave STD-CNNs. This article addresses the issue of exponential synchronization for the time-delayed STD-CNNs with the heterogeneous structure via the controls at the boundaries, based on the learning law setting for the parameter in the slave STD-CNNs. In a corresponding manner, the exponential synchronization for time-delayed STD-CNNs with the homogeneous structure can be achieved via boundary controls. This study demonstrates that the problem of exponential synchronization for time-delayed heterogeneous STD-CNNs can be modeled by designating a time-varying learning parameter in the slave STD-CNNs, which can then be solved by means of calculative linear matrix inequalities(LMIs). To illustrate the feasibility of the current work, a numerical example is presented.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH