What are we weighting for? A mechanistic model for probability weighting

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Alexander Adamou, Yonatan Berman, Mark Kirstein, Ole Peters

Ngôn ngữ: eng

Ký hiệu phân loại: 542.32 Techniques, procedures, apparatus, equipment, materials

Thông tin xuất bản: 2020

Mô tả vật lý:

Bộ sưu tập: Báo, Tạp chí

ID: 164335

Behavioural economics provides labels for patterns in human economic behaviour. Probability weighting is one such label. It expresses a mismatch between probabilities used in a formal model of a decision (i.e. model parameters) and probabilities inferred from real people's decisions (the same parameters estimated empirically). The inferred probabilities are called "decision weights." It is considered a robust experimental finding that decision weights are higher than probabilities for rare events, and (necessarily, through normalisation) lower than probabilities for common events. Typically this is presented as a cognitive bias, i.e. an error of judgement by the person. Here we point out that the same observation can be described differently: broadly speaking, probability weighting means that a decision maker has greater uncertainty about the world than the observer. We offer a plausible mechanism whereby such differences in uncertainty arise naturally: when a decision maker must estimate probabilities as frequencies in a time series while the observer knows them a priori. This suggests an alternative presentation of probability weighting as a principled response by a decision maker to uncertainties unaccounted for in an observer's model.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH