Computations and Complexities of Tarski's Fixed Points and Supermodular Games

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Chuangyin Dang, Qi Qi, Yinyu Ye

Ngôn ngữ: eng

Ký hiệu phân loại: 519.3 Game theory

Thông tin xuất bản: 2020

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 164502

We consider two models of computation for Tarski's order preserving function f related to fixed points in a complete lattice: the oracle function model and the polynomial function model. In both models, we find the first polynomial time algorithm for finding a Tarski's fixed point. In addition, we provide a matching oracle bound for determining the uniqueness in the oracle function model and prove it is Co-NP hard in the polynomial function model. The existence of the pure Nash equilibrium in supermodular games is proved by Tarski's fixed point theorem. Exploring the difference between supermodular games and Tarski's fixed point, we also develop the computational results for finding one pure Nash equilibrium and determining the uniqueness of the equilibrium in supermodular games.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH