Machine Learning Time Series Regressions with an Application to Nowcasting

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Andrii Babii, Eric Ghysels, Jonas Striaukas

Ngôn ngữ: eng

Ký hiệu phân loại: 006.31 Machine learning

Thông tin xuất bản: 2020

Mô tả vật lý:

Bộ sưu tập: Báo, Tạp chí

ID: 164555

Comment: Portions of this work previously appeared as arXiv:1912.06307v1 which has been split into two articlesThis paper introduces structured machine learning regressions for high-dimensional time series data potentially sampled at different frequencies. The sparse-group LASSO estimator can take advantage of such time series data structures and outperforms the unstructured LASSO. We establish oracle inequalities for the sparse-group LASSO estimator within a framework that allows for the mixing processes and recognizes that the financial and the macroeconomic data may have heavier than exponential tails. An empirical application to nowcasting US GDP growth indicates that the estimator performs favorably compared to other alternatives and that text data can be a useful addition to more traditional numerical data.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH