Parametric Modeling of Quantile Regression Coefficient Functions with Longitudinal Data

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Matteo Bottai, Iván Fernández-Val, Paolo Frumento

Ngôn ngữ: eng

Ký hiệu phân loại: 001.43 Historical, descriptive, experimental methods

Thông tin xuất bản: 2020

Mô tả vật lý:

Bộ sưu tập: Báo, Tạp chí

ID: 164563

Comment: 71 pages, 2 figures, includes appendix, R companion package available at https://cran.r-project.org/web/packages/qrcm/index.htmlIn ordinary quantile regression, quantiles of different order are estimated one at a time. An alternative approach, which is referred to as quantile regression coefficients modeling (QRCM), is to model quantile regression coefficients as parametric functions of the order of the quantile. In this paper, we describe how the QRCM paradigm can be applied to longitudinal data. We introduce a two-level quantile function, in which two different quantile regression models are used to describe the (conditional) distribution of the within-subject response and that of the individual effects. We propose a novel type of penalized fixed-effects estimator, and discuss its advantages over standard methods based on $\ell_1$ and $\ell_2$ penalization. We provide model identifiability conditions, derive asymptotic properties, describe goodness-of-fit measures and model selection criteria, present simulation results, and discuss an application. The proposed method has been implemented in the R package qrcm.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH