Sparse HP Filter: Finding Kinks in the COVID-19 Contact Rate

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Sokbae Lee, Yuan Liao, Myung Hwan Seo, Youngki Shin

Ngôn ngữ: eng

Ký hiệu phân loại: 003.83 Discrete-time systems

Thông tin xuất bản: 2020

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 164693

Comment: 42 pages, 15 figures, 1 tableIn this paper, we estimate the time-varying COVID-19 contact rate of a Susceptible-Infected-Recovered (SIR) model. Our measurement of the contact rate is constructed using data on actively infected, recovered and deceased cases. We propose a new trend filtering method that is a variant of the Hodrick-Prescott (HP) filter, constrained by the number of possible kinks. We term it the $\textit{sparse HP filter}$ and apply it to daily data from five countries: Canada, China, South Korea, the UK and the US. Our new method yields the kinks that are well aligned with actual events in each country. We find that the sparse HP filter provides a fewer kinks than the $\ell_1$ trend filter, while both methods fitting data equally well. Theoretically, we establish risk consistency of both the sparse HP and $\ell_1$ trend filters. Ultimately, we propose to use time-varying $\textit{contact growth rates}$ to document and monitor outbreaks of COVID-19.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH