Kuhn's Equivalence Theorem for Games in Intrinsic Form

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Jean-Philippe Chancelier, Michel de Lara, Benjamin Heymann

Ngôn ngữ: eng

Ký hiệu phân loại: 519.3 Game theory

Thông tin xuất bản: 2020

Mô tả vật lý:

Bộ sưu tập: Báo, Tạp chí

ID: 164750

We state and prove Kuhn's equivalence theorem for a new representation of games, the intrinsic form. First, we introduce games in intrinsic form where information is represented by $\sigma$-fields over a product set. For this purpose, we adapt to games the intrinsic representation that Witsenhausen introduced in control theory. Those intrinsic games do not require an explicit description of the play temporality, as opposed to extensive form games on trees. Second, we prove, for this new and more general representation of games, that behavioral and mixed strategies are equivalent under perfect recall (Kuhn's theorem). As the intrinsic form replaces the tree structure with a product structure, the handling of information is easier. This makes the intrinsic form a new valuable tool for the analysis of games with information.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH