Assessing External Validity Over Worst-case Subpopulations

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Sookyo Jeong, Hongseok Namkoong

Ngôn ngữ: eng

Ký hiệu phân loại: 152.8 Threshold, discrimination, reaction-time studies

Thông tin xuất bản: 2020

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 164800

Comment: A previous version of the paper circulated under the title "Robust Causal Inference Under Covariate Shift via Worst-Case Subpopulation Treatment Effects" appeared in COLT 2020Study populations are typically sampled from limited points in space and time, and marginalized groups are underrepresented. To assess the external validity of randomized and observational studies, we propose and evaluate the worst-case treatment effect (WTE) across all subpopulations of a given size, which guarantees positive findings remain valid over subpopulations. We develop a semiparametrically efficient estimator for the WTE that analyzes the external validity of the augmented inverse propensity weighted estimator for the average treatment effect. Our cross-fitting procedure leverages flexible nonparametric and machine learning-based estimates of nuisance parameters and is a regular root-$n$ estimator even when nuisance estimates converge more slowly. On real examples where external validity is of core concern, our proposed framework guards against brittle findings that are invalidated by unanticipated population shifts.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH