Spectral Targeting Estimation of $\lambda$-GARCH models

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Simon Hetland

Ngôn ngữ: eng

Ký hiệu phân loại: 523.87 Spectral types

Thông tin xuất bản: 2020

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 164805

This paper presents a novel estimator of orthogonal GARCH models, which combines (eigenvalue and -vector) targeting estimation with stepwise (univariate) estimation. We denote this the spectral targeting estimator. This two-step estimator is consistent under finite second order moments, while asymptotic normality holds under finite fourth order moments. The estimator is especially well suited for modelling larger portfolios: we compare the empirical performance of the spectral targeting estimator to that of the quasi maximum likelihood estimator for five portfolios of 25 assets. The spectral targeting estimator dominates in terms of computational complexity, being up to 57 times faster in estimation, while both estimators produce similar out-of-sample forecasts, indicating that the spectral targeting estimator is well suited for high-dimensional empirical applications.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH