A Semiparametric Network Formation Model with Unobserved Linear Heterogeneity

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Luis E Candelaria

Ngôn ngữ: eng

Ký hiệu phân loại: 001.434 Experimental method

Thông tin xuất bản: 2020

Mô tả vật lý:

Bộ sưu tập: Báo, Tạp chí

ID: 164832

This paper analyzes a semiparametric model of network formation in the presence of unobserved agent-specific heterogeneity. The objective is to identify and estimate the preference parameters associated with homophily on observed attributes when the distributions of the unobserved factors are not parametrically specified. This paper offers two main contributions to the literature on network formation. First, it establishes a new point identification result for the vector of parameters that relies on the existence of a special repressor. The identification proof is constructive and characterizes a closed-form for the parameter of interest. Second, it introduces a simple two-step semiparametric estimator for the vector of parameters with a first-step kernel estimator. The estimator is computationally tractable and can be applied to both dense and sparse networks. Moreover, I show that the estimator is consistent and has a limiting normal distribution as the number of individuals in the network increases. Monte Carlo experiments demonstrate that the estimator performs well in finite samples and in networks with different levels of sparsity.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH