Learning from Manipulable Signals

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Mehmet Ekmekci, Leandro Gorno, Lucas Maestri, Jian Sun, Dong Wei

Ngôn ngữ: eng

Ký hiệu phân loại: 155.911 Influence of sensory stimuli

Thông tin xuất bản: 2020

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 164863

We study a dynamic stopping game between a principal and an agent. The agent is privately informed about his type. The principal learns about the agent's type from a noisy performance measure, which can be manipulated by the agent via a costly and hidden action. We fully characterize the unique Markov equilibrium of this game. We find that terminations/market crashes are often preceded by a spike in (expected) performance. Our model also predicts that, due to endogenous signal manipulation, too much transparency can inhibit learning. As the players get arbitrarily patient, the principal elicits no useful information from the observed signal.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH