Deep Dynamic Factor Models

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Paolo Andreini, Cosimo Izzo, Giovanni Ricco

Ngôn ngữ: eng

Ký hiệu phân loại: 537.5 Electronics

Thông tin xuất bản: 2020

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 164899

A novel deep neural network framework -- that we refer to as Deep Dynamic Factor Model (D$^2$FM) --, is able to encode the information available, from hundreds of macroeconomic and financial time-series into a handful of unobserved latent states. While similar in spirit to traditional dynamic factor models (DFMs), differently from those, this new class of models allows for nonlinearities between factors and observables due to the autoencoder neural network structure. However, by design, the latent states of the model can still be interpreted as in a standard factor model. Both in a fully real-time out-of-sample nowcasting and forecasting exercise with US data and in a Monte Carlo experiment, the D$^2$FM improves over the performances of a state-of-the-art DFM.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH